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A b s t r a c t - - A  simple model  of similar folds in homogeneous  materials with anisotropic properties is proposed and 
it is shown that the model  is applicable to a wide range of natural  examples  of  folds. A mathemat ical  derivation 
is given which allows the ins tantaneous  deformat ion of the folds to be calculated for any imposed bulk 
deformation.  A means  of projecting the effects of  the deformation over a finite t ime interval is described. The  
modell ing is illustrated by simulations of folds observed in the Morcles nappe,  western Switzerland, based on the 
assumption that the folds formed under  simple shear  bulk deformation.  Folds with geometrical features 
remarkably similar to those natural  folds are produced in the modell ing by varying the parameters .  

INTRODUCTION 

FOLDED rocks form a large proportion of orogenic belts. 
Strain markers can often be used to determine the finite 
strain at points within a fold. These strain determinations 
have a local significance only as they are strongly influ- 
enced by local heterogeneities within the fold. If the 
strain patterns associated with folds were completely 
understood, it would be possible to relate the local 
variations of strain within a fold to the strain value 
appropriate to the scale of a fold wavelength, which is of 
regional significance. Published theoretical work on fold 
development covers the early stages of single-layer fold- 
ing (Biot 1961, Ramberg 1963) and internal buckling 
(Biot 1965, Cobbold et al. 1971). Treagus (1973) 
extended single-layer buckling theories to cases in which 
compression is oblique to the layer. The development of 
folds to finite amplitude has been studied using finite 
element analysis by, among others, Dieterich (1969) and 
Shimamoto & Hara (1976). 

None of these approaches permits an easy modelling 
of the finite geometry of folds which develop in a com- 
pletely general deformation. The present work seeks a 
solution to this problem by considering the type of fold 
geometry known as similar folds. The analysis is 
restricted to linear viscous materials. The major com- 
plexity in carrying out a mathematical analysis of folding 
arises from the fact that two-dimensional analyses are 
usually required to describe the folding processes. This 
paper shows that in the case of similar folding, the 
analysis can be reduced to a one-dimensional problem. 
It is a generalization of the approach of Cobbold (1976) 
and similar to that of Bayly (1964), except that the latter 
author related the deformation in the folds to the stress 
at the boundary rather than to the imposed bulk defor- 
mation. An outline of the analysis is given here, only 
matters relevant to the modelling of fold patterns being 
described in detail. A detailed analysis and implications 
for the mechanics of folding will be given elsewhere. 

SIMILAR FOLDING IN A GENERAL 
IMPOSED STRAIN 

An idealization of  similar folding 

Most natural folds occur in multilayered sequences of 
alternating layers differing in competence. The 
geometry of the structure changes markedly from the 
more competent to the less competent layers but the 
average geometry over several layers frequently approx- 
imates the similar-fold model (Ramsay 1967). A multi- 
layered sequence of more and less competent layers has 
rheological properties on the large scale identical to 
those of transversely isotropic materials (Biot 1965, 
Cobbold et al. 1971). That is, the material is hard to 
deform when the principal incremental strain axes are 
parallel and perpendicular to the layering and easier to 
deform when the strain axes are at 45 ° to the layering. In 
the latter case the imposed strain can be taken up by 
shear deformation in the less competent layers. 

The following assumptions are made for the sub- 
sequent analysis. 
(1) The material in which the folds develop is aniso- 

tropic and homogeneous. 
(2) The material has linear viscous rheological proper- 

ties. 
(3) The geometry of the similar folds is idealized as 

shown in Fig. 1, where the coordinate systems used 
are also shown. 

(4) The inflexion points are axes of two-fold rotational 
symmetry. 

(5) The points of two-fold rotational symmetry move at 
velocities determined by the imposed deformation. 

In Fig. 1 the line joining the inflexion points of succes- 
sive layers has been set parallel to the y axis of the fold 
reference system x,y. Assumption 5 means that the y 
component of the strain-rate by in the x,y system is 
determined by the imposed deformation. 

The coordinate system x',y'  of Fig. 1 is the main 
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[ig. 1. hlcalized similar lold geometry and coordinate systems used. 
l h c  x'.~ ' s}.slenl is the general reference system in which the imposed 
bulk dclormation alld the fold geometry are given. The system x,y is 
set up x~ith the v axis parallel to the axial planes of the folds. The system 
C'.v" has C' parallel to the folded surfaces and is used in lhe definition 

,~1 the Ielatiotl between stress and strain rate. 

reference system in which the imposed bulk deformation 
is specified. In general x,y and x ' ,y '  are not parallel as 
shown in Fig. 1. 

Conditions on the variation o f  stress and strain-rate across 
an ideal similar fold 

The 
gradient matrix in the x ' ,y '  system 

imposed deformation is given as the velocity 

Or;, ov;, ) 
ax 7 7  

k i = O v a ,  Ov,',, 

Ox ay 

(1) 

The strain-rates and rotation rates are related to the 
components of the velocity gradient matrix by the fol- 
lowing equations 

0Vtx, 

- 7t 
t ' ~ "  _ c 1 1 % , ,  

ay' (2) 

5'~'~' ay' + Ox' 

l(<, 0Wt 
o~ = 5 ay' ax']" 

The above equations can be easily inverted to give 
equations relating the components of the velocity gra- 
dient matrix to the strain-rate and rotation-rate terms. 

Stress equilibrium and strain compatibility can be 
used to find constraints on the variations of stress and 

strain-rate across the folds. The reference system of Fig. 
1 was set up with the y axis in the direction in which fold 
profile geometry remains constant. If the geometry is to 
remain constant in the y direction the components of 
stress and of the velocity gradient matrix must not vary 
with y. Velocity components may, however, vary 
linearly with y. This means that differentiation of stress 
and velocity gradient terms with respect to y gives a 
result that can be set to zero. This analysis has been 
carried out by Cobbold (1976) for symmetric similar 
folds but the results for strain variation must be 
generalized to cover the current cases. 

The stress equilibrium equations are 

. . . .  + . . . . . . . .  0 (3) 
3~ 3v 

. . . .  -+ . . . . . .  0. 14) 
i} v 0 V 

Or, using the fact that differentiation with respect to y 
gives zero 

0 0  x 
. . . . . .  0 (5) 
O.V 

07"×v 
. . . . . . .  O .  (6) 
0X 

Equations (5) and (6) express the condition that ~r X 
and r~y are constant across the fold profile. 

Differentiating the terms in the first column of the 
velocity gradient matrix in (1) with respect to y and 
setting the result equal to zero gives 

a2vx 
. . . . . . . .  1} (7) 
;~v ?Jx 

02Fv 
. . . . . . . .  o. (8) 
;~ v ax 

Using the fact that the order of partial differentiation 
does not influence the result 

(9) 
ax " ! \  0 v  

,:i (0v,, i 00, 
ax ~ ;_7/---  g : 0. (10) 

Equation (10) shows that by is constant across the fold 
profile and equations (9) and (10) show that the second 
column of the velocity gradient matrix is constant across 
the profile. This means that the instantaneous straining 
of the fold can only differ from the imposed deformation 
in the first column of the velocity gradient matrix. A 
variation of aVy/aX corresponds to a heterogeneous sim- 
ple shearing with shear planes parallel to y. See also 
Cobbold (1976) equation (32). 

The strain-rate stress relation jor  anisotropic linear 
viscous materials 

The material in which the folds develop is homogene- 
ous but has anisotropic deformation properties. The 
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Fig. 2. Representation of an anisotropic material. The stress strain rate 
relation is defined in coordinate system x",y",:. 

lines defining the folds are directions parallel to which 
shearing deformation is easiest. The material is trans- 
versely isotropic (Zienkiewicz 1971, p. 55) or ortho- 
tropic (Biot 1965, Cobbold et al. 1971, Cobbold 1976) 
and is shown in Fig. 2. 

In the plane of the stratification (the x" ze' plane of 
Fig. 2) the material has isotropic properties. That is, the 
values of the parameters relating stress and strain-rate 
do not vary with the orientation of the coordinate axes in 
the plane of stratification. For this reason the plane of 
stratification is called the isotropic plane. 

In the coordinate system x",y",z" of Fig. 2 the deforma- 
tion rates and stress are related by 

kx" o'~,, o'y,, (r~,, 
~--- - -  - -  /22 - -  / " 1 -  

o'~,, _fit' a~,, 
0 y "  ~--- /22 - -  + - -  /22 - -  

r/2 7/2 772 

e~ . . . .  /2~ - -  - /22 + - -  (11) 
7/1 7/2 7/t 

3'x"," = 2( l+vt ) /n l  rx,,z" 

1 
%': = G2 rx.: 

1 
%,~,, = ~ ~:,z,,. 

These equations were adapted from the equations for 
anisotropic elasticity given in Zienkiewicz (1971, p. 55). 
~71 is the direct viscosity modulus and Vl the equivalent to 
Poisson's ratio in the isotropic plane, x"z". 772, G2 and/22 
are the direct modulus, shear modulus and Poisson's 
ratio equivalent, respectively in the planes containing 
the normal to the isotropic plane. 

Strain-rate components ez", ~A": and ~/y,,: are all zero 
for plane strain. Using the condition that ~z" is zero to 
eliminate cr~,, and putting rh/rh = n and G2/'q2 = m gives 

[D"] = [nL2 (1 - v~) - .2 v-2 (1 + ~ 1 )  0 

1 -~2(1 +v2 1 (1 nv~) 0 

L 0 0 1 
m~2 

(12)  

where [D"] is the strain-rate stress matrix in the system 
x", y". 

This way of defining the strain-rate stress equation 
uses five moduli to define the behaviour and differs from 
the analysis of Cobbold (1976) who employed two (N, 
the direct modulus and Q, the shear modulus) because 
he considered incompressible materials in plane strain. 
Equation (12) permits volume change (vl and v 2 ~ 0.5) 
and different direct moduli (n ~ 1.0). The parameter n is 
always set to 1.0 in the present application. The parame- 
ter m defines the degree of anisotropy; a value of 
corresponds to isotropic behaviour and m < ] gives easy 
shear into the isotropic plane (Fig. 2). 

The strain-rate stress relation for an anisotropic 
material is different in differently oriented coordinate 
systems and equation (12) applies for systems with the y 
axis normal to the plane of easy shear only. In the 
following paragraphs a means of transforming the matrix 
[D] to other coordinate systems is derived. 

Stress components can be transformed from x, y to 
another system x", y" which is rotated an angle/3 (anti- 
clockwise positive) from x ,y  by using 

[~'l = [T][a] 

where [T] is given by 

c os  2 3 

IT] = sin 2 fl 

- sin fl cos/3 

(13)  

sin 2 13 2 sin 13 cos 13 -1 
/ 

cos 2 fl - 2  sin fl cos/3 / • 
/ 

sin/3 cos fl cos2/3-sin2fl / 

(14) 

The matrix [T] can also be used to transform the 
matrix [D] from a local system with x" parallel to the 
layering at a point in the fold to the fold reference system 
x, y, (Fig. 1). In the x", y" system the stress [or"] and 
strain-rates [0"] do work at a rate given by 

w = [d'lT[0"l. (15) 

Here, the superscript T denotes the transpose of the 
matrix or vector concerned. The stress [o-] and strain- 
rates [~] in the unprimed system do an equal amount of 
work, since the deformation is the same. 

or, 

Using (13) 

Therefore 

[ : ] T [ o , , ]  = M T [ e ]  

[o , , lV[D, , l [ a  ,,1 = [o-lT[Dl[o-I  . 

[tr]T[T]T[D"][T][tr] = [o-]T[D][tr]. 

[D] = IT]T[D "] [T]. (16) 

This general strain-rate stress matrix has no zero ele- 
ments, in contrast to [D"] in (12). 

Writing the general strain-rate stress relation in full 

kx= Vdll d12 dl3]  O'x 

Oy [d12 d22 d23 [ Ory (17) 

"Yxy [_d13 d23 d33 ..] "Fxy" 
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The dii terms stand for the matrix [D] and, as is indicated 
by the indexing, the [D] matrix is symmetric. 

Analysis  o f  similar ]biding 

In equation (17) k~, cq and r,y are constant across the 
fold profile. The other terms, (ex, 5'xy, % and the dii) vary 
according to the orientation of the plane of easy shear. 
To emphasize the difference between stress and strain 
terms which vary in x and those which are constant, the 
former will be written with x in parentheses, for example 
%(x). 

From (17) 

by = d!2o" ~ + dz2o'y(X ) + d23rxy. 

Solving for o~(x) 

O'v(X) = b.~, d12 d23 (18) 
. d22 d22 o-× - d,---~ r~y. 

This expression for %(x) can be substituted into equa- 
tion (17) to give equations relating the variable strain- 
rate components to by, which is known, and ~ and r~y, 
which are constant 

( 2 ( d23d12 ) 
,x, 

I d2 2 ] d2 2 < 
all2 . 

+ d,-~_: ev (19) 

d23d12~°x~ ~ ( d22~23/] "yx,/(X) : ( \dl~ + d33 -- r×y 

d23 
+ d2----, by. (20) 

The values of or, and %y are not known at the start of 
the analysis, but once they are known the strain-rate 
across the profile can be calculated using equations (19) 
and (20). 

From assumption 5, the velocity at the inflexion points 
is known. The origin is located at an inflexion point on 
one limb (Fig. 3). The velocity at the origin is set to zero• 
The velocity at a point x* on the x axis is given by 
integrating the velocity gradient terms along the line y = 
0, (Fig. 3). 

Vx(X* ,0) = OVx__ dx = bx ctx 
. ~) 3x o 

f ~'" O V y  
v~(x*,O) = - -  dx. 

. o 3x 

From the definitions of strain-rates in ( 2 )  

OVy_ l/2Y×v + w (21) 
(tX 

3y -- 1/24/xY -- m. (22) 

From equation (7), OVx/Oy is constant across the fold, 
and 

OV v . OV x 
" - Yxy (23) 

Ox Oy 

I 
tipes of t 

........... inftexion po(nts " 

I 
fo~ded / 
surface . /  

 yx< I path of 
integration 

x=O X=a 

known 

Fig. 3. The velocities al the inflexion points are known and the 
velocities of points across the fold may be obtained by integration of 
velocity gradient terms along the x axis. The velocities of points on the 

folded surface differ from those on the x axis. 

enables OVy/OX to be related to known quantities. 

Thus 

[' vx(x*,O) = G dx (24) 
. lI 

. o Oy ] 

Substituting for e× and Yx~, from (19) and (20) 

f [ (  x* d]~\ 2 !  " ( d , 3dp \  d,3 ~ ffxy v # * , 0 )  : a , ,  - d2-) x + 
0 

+ '- e,, ctr (26) 

vy(x*,O)= ,, d~3 + d 3 3 -  d = , % ,  

d~ 0Vx-] 
+ - ~ , -  dx. (27) 

If the integrals in equations (24) and (25) are taken to the 
inflexion point on the next fold limb (x* = a) then the 
velocities are known, using assumption 5 

- -  a = cr x dll d2a] dx + r~v d13 ~ . dx  
OX 0 - 0 ~,> , 

" dr, 
+ k v '" dx (128) 

• 0 d , ,  

- -  a = o~, dl3 dx + d33 dx 
OX . d22 ,l "rxY d 2 2 ]  

I 
OVx 

+ Ov a,,  dx - - -  a .  ( 2 9 )  
• 0 ~, Oy 

The terms ey, o'~ and %y are constant across the fold and 
have been taken outside the integrals. 

Rearranging and putting 

Ot'~ Ovy 

Y×~ ?) "¢ OX 
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f i (d,1 d2£) dX + ( d13 d13d12~ 
o- x -- "/'xy f l  d22 J dx 

= a ex - ey d222 dx (30) 

Orx I i ( d l 3  d23d12~ dx ~22 } '~- "/'xY J Of a ( d33 -- d222} d2~  dx 

f a d23 
= a "Yxy - eY o ~ dx. (31) 

Equations (30) and (31) represent two simultaneous 
equations for cr x and rxy. The integrals involve terms of 
the strain-rate stress matrix [D] which vary according to 
the orientation of the plane of easy shear. For a given 
fold shape, the integrals can be evaluated numerically 
and the equations can be solved for o'x and rxy. Note that 
the rigid rotation rate, to, of the applied deformation has 
no influence on the stress at the instant considered. 
Equations (30) and (31) can also be derived by minimiz- 
ing the rate of dissipation of energy within a strip of 
material running from one line of inflexion points to the 
next and the work done by forces acting on the bound- 
aries of the strip. 

Once crx and rxy have been found, equations (18-20) 
can be used to give the other stress and strain-rate 
components across the fold. The diagonal components 
of the velocity gradient matrix are ~x and ~y, aVx/ay is 
constant and equal to the imposed value (equation 9), 
and aVy/aX can be obtained from equation (23). Equa- 
tions (26) and (27) can be used to obtain the velocity of 
points across the fold along the line y = 0. To obtain the 
velocity along the surface defining the fold (Fig. 3) a 
quantity must be added to both components to take 
account of the homogeneous strain-rate 

Vx(X,y) = v~(x,O) + l'Yxy y 
(32) 

Vy(X,y) = Vy(X,0) + ey y. 

The distribution of deformation between competent and 
incompetent units 

The homogeneous material with anisotropic deforma- 
tion properties is used to approximate an alternating 
sequence of isotropic layers of different viscosity. The 
velocity gradient matrix calculated above can be applied 
to a multilayered model at various points across the fold 
to calculate the velocity gradient matrix in each of the 
constituent layers. 

In this analysis it is assumed that the strain in each unit 
is homogeneous. Effects in real folds, such as the squeez- 
ing of incompetent units into the fold hinges (Williams 
1980), and heterogeneities associated with the fold hinge 
are ignored. Thus this part of the analysis is applicable 
only to regions of the fold away from the hinge where the 
beds are straight. 

This analysis represents a sub-problem independent 
of the analysis in the previous sections. 

A muitilayered packet consisting of layers of vis- 
cosities ~71 and r/2 and relative thicknesses F and (I-F) is 

"q2 

X' 

Fig. 4. A multilayer sequence of alternating layers of viscosities r h and 
~72 and thicknesses tl and t 2. 

shown in Fig. 4. The bedding planes have been set 
parallel to y" so that continuity conditions obtained 
above (equations 5, 6, 9 and 10) can be applied directly. 
Points on the centre lines of the layers are points of 
twofold rotational symmetry, and assumption 5 is 
applied here in the same way as for fold inflexion points; 
that is, velocities of points on the centre lines of the 
layers are given by the imposed deformation 

iOrx,, =riCllL O iC12 0 ] iex,, 
toy,, lic12ic220 iey,, (33) 
i Tx,,y. 0 "C33 i'}/x,,y,, . 

The matrix cii is given by 

n(1-,,) 
Cij = (1 + v ) (1 -  2v) 

I l v l ( 1 - v )  0 ] 

x vl(1 - v) 1 0 , 

0 0 (1 - 2v)/2(1 - v) 

where 7/is the direct viscosity modulus and visa modulus 
equivalent to Poisson's ratio. This equation was taken 
from Zienkiewicz (1971, p. 54, equation 4.20). 

The conditions for stress variation, equations (5) and 
(6), give 

lO'x,, ---- 20"x,, (34) 

l"rx,,y,, = 2rx,,y,. (35) 

The conditions on the components of the velocity 
gradient matrix, equations (9) and (10, give 

l~y,, = 2~y. = l~y,, (36) 

101)x" __ 201ix " __ I01"x" 
0y" Oy" Oy" ' (37) 

The continuity o f  shear stress allows an equation 
relating shear strain-rate in the two layers to be written 

l~/×,,y,, = 2C3___ 3 2~x.y,," (38) 
IC33 

Writing out the first of equations (33) for each layer 
and equating according to equation (34) gives 

SG 7:I-F 
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IClllbx,, + lC~21k ¢, = :c l l ekx  ,, + 2Ct fb¢ , .  (39) 

Using equation (36) and rearranging: 

-ClI-e x- of_ (-C12 -- 1C12 ) Je ..... (40) 
ICx,, = 1Ci  1 

From considerations of the x component of velocity it 
can be shown that 

Ii'x,, = F~kx,, + (1 - F )  2bx,, (41) 

Eliminating Jbv, between (4(t) and (41) gives an equation 
relating 2/" v, to known quantities 

,i,v, = :~iiii':, , - ( :c l~  - Ict_~) F i b ,  '' (42) 
: c I i F  + I c l l ( l - F )  

From equations (22) and (37): 

l 1 • z w  IOvx,, 
l'yx"~ . . . .  160 : ~ :~x"y . . . .  0y"" 

Thus: 

and 

1 10Vx,, 
~w -- ~ 1,~x,,y,, Oy" (43) 

1 , .  lOVx,, 
: w  = ~ "ex,,y,, Oy" (44) 

From considerations of the y component of velocity 

FlOV~ 20vv,, tore ,  
+ (l = -m~. (45) ,~x" - F )  5x;' Ox" 

Using equation (21 ) 

F.11 - 1 ~  • 10Vy ' 
~ Yx"v" + lw) + ( l -F)(Uyx"y" + 2w) -- Ox" (46) 

Using equations (43) and (44) to eliminate loJ and 2oJ and 
rearranging 

EOVx,, tory,, 
FL~×,,y,, + (1-F)2yx,,y,, - Oy" + Ox" - i~x'~ .... (47) 

Using (38) to eliminate t%,,y,, gives 

'~/x'y' (48) = 9 

% "  F~ C33 + ( l - F )  
IC33 

From these equations the strain-rate and rotation rate 
terms of the component layers of the multilayer 
sequence can be calculated once their relative thick- 
nesses and viscosities have been assigned. The velocity 
gradient matrices can be obtained from the strain-rate 
and rotation rates, the diagonal terms being ev, and ey,, 
and the off-diagonal elements are given by equations 
(21) and (22). 

KINEMATICS AND TIME INTEGRATION 

The geometry of the first-formed folds is specified by 
giving the coordinates of points at intervals across the 

Y 

Fig. 5. The geometry of the model at some time during the simulation. 
The symbol X represents the points used to define the fold profile 
shape. The angle & gives the orientation of the axial plane relative to 

the general reference system x'  ,y'. 

profile and the direction in which the fold geometry is 
constant, which is also parallel to the line joining inflex- 
ion points on successive layers. The geometry of the 
folds at later times is given by the coordinates of the 
chosen points• The line joining the inflexion points is 
reoriented by the deformation gradient matrix defining 
the bulk finite deformation. The geometry at time t is 
shown in Fig. 5. The analysis presented above for the 
calculation of the velocities across the fold along the line 
y = 0 requires as input, the orientation of the direction 
of easy shear at points across the fold profile and the 
imposed strain matrix The orientation of the line of easy 
shear is obtained from the slope of the fold profile. The 
strain-rates and rotation rates are calculated from the 
imposed velocity gradient matrix by equations (2). 

A difficulty in this analysis is that the fold coordinate 
system x, y is rotating relative to the general reference 
frame x' .  y'  and this rotation has to be taken into account 
in transforming the velocity gradient matrix, rotation 
rates and velocities but not strain-rates and coordinates 
(see Eringen 1962, pp. 89-93). This problem can be 
obviated here, as rigid rotations do not affect the instan- 
taneous mechanics of the buckling instability and the 
contribution to the velocity from the strain rates and the 
rigid rotations of the imposed deformation can be consi- 
dered separately and added to give the final value. 

At any instant the velocity of the points on the fold 
profile which represent the geometry is a function of the 
coordinates of the points and of the bulk finite deforma- 
tion gradient matrix [~ b] 

v '  -- v ' ( x ' , a , b , c , d ) ,  

where v' and x' represent the vector formed of all the x' 
and y'  components of the velocities and coordinates of 
the points in the fold used to represent the geometry. 

The velocities are also the time rate of change of 
position, hence: 

dx' dx' 
- ( x ' , a , b , c , d ) .  

dt dt 

Thus the projection through time involves the solution 
of a system of ordinary differential equations, which in 
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this case was achieved by the fourth order Runge-Kutta 
method (Ralston & Wilf 1960, ch. 9). 

The time rate of change of the deformation gradient 
matrix is given by equation (49), which was adapted 
from Eringen (1967, p. 70 equation 2.4.1) 

da av x aVx 
- a +  - - c  

dt 0x ay 

db _ av x b + Ov--2 d 
dt Ox Oy 

(49) 
dc Ovy OVy 

- a +  - - c  
dt Ox Oy 

dd  _ avy b + av_..y d. 
dt Ox ay 

This also represents a system of ordinary differential 
equations which must be solved simultaneously with 
those for the points defining the fold profile by the same 
method. 

The deformation gradient matrices defining the finite 
imposed deformation and the finite deformation in the 
component layers of the multilayer were all calculated in 
this way. The usual measures of finite strain, elonga- 
tions, principal directions and finite rigid rotation can be 
calculated from the deformation gradient matrix using 
equations [7)-(10) of Ramsay & Graham (1970). 

T H E  V A L I D I T Y  O F  T H E  A S S U M P T I O N S  A N D  
T H E  A P P L I C A B I L I T Y  OF T H E  M O D E L  

Assumptions must be made before any model can be 
formulated and it is useful to consider how closely the 
assumptions must be satisfied for the model to be useful 
in understanding reality. To explore these questions 
exactly it would be necessary to establish more rigorous 

models. Time does not allow this and hence the discus- 
sion here is largely qualitative. 

Assumption 1 restricts the model to perfect or nearly 
perfect similar folds. A variation in fold geometry as 
expressed by a variation in amplitude along the axial 
plane will remove the condition that differentiation with 
respect to y gives a zero result. In many natural folds the 
variation in amplitude along the axial plane is slight over 
distances comparable to the fold wavelength and the 
model is almost certainly applicable to these cases also. 

The assumption of homogeneous anisotropic material 
to represent a multilayer sequence (assumption 2) is 
very good when fold wavelengths are long in relation to 
bed thickness, which is common in chevron folds (Ram- 
say 1974). This is because the bending resistance of 
competent units, neglected in the model, is less impor- 
tant at large wavelength to thickness ratios than small 
ratios. The bending resistance of the competent units 
will lessen the tendency to form sharp hinges at an early 
stage in the development of the folds and will also 
influence the mobility of the hinge. 

Assumption 3, the use of linear viscous rheology in 
place of a power law behaviour, can be justified on the 
grounds that the deviatoric stress does not vary much 
across the fold profile. Hence a linearization represents 
a good approximation. 

The assumption that the inflexion points are axes of 
two-fold rotational symmetry restricts the analysis to 
folds where this is approximately true. 

Assumption 5, that the lines of inflexion points deform 
as passive markers was made as a matter of convenience 
and it could probably be justified by logical argument. 

The proportion of natural folds satisfying the assump- 
tions exactly is certainly very small. However natural 
folds satisfy the assumptions sufficiently closely for the 
model to provide a useful framework for understanding 
their development. 

Oiablerets nappe 

Ultra- Hetvefic nappes 

thrust confact ~ - - ~ ~ ~ ' ~  ~ \ ~  
- ~  fop of Cretaceous ~ ~ _  ~ ~ ' - ~ . ~ . . ~  ~ .  

1 I <  o 

Fig. 6. Section through the Morcles Nappe showing strain measurements from naturally deformed objects and pressure 
shadows. Compilation of J. G. Ramsay from published and unpublished data of D. W. Durney, A. W. B. Siddans, 

D. Dietrich and J. G Ramsay (from Ramsay & Huber 1984). 
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axial plane 

/ enveloping surface 

/ 

-g 3 0 

Fig. 7. Initial perturbation and simple-shear strain profile for the 
proposed model for the formation of the Morcles Nappe. The simple 
shear strain profile represents estimated finite values and not a simple 

shear rate profile. 

Fig. 9 Simulation of a Iold horn the overturned limb of the Morcles 
Nappe. The broad arrows mark the inflexion points. The initial 
amplitude to wavelength ratio was 0.01, the shear zone was at 10 ° to the 
enveloping surface of the initial perturbation and the anisotropy index 

m had a value of 0.01 ~ The imposed simple shear strain was 12.8. 

A P P L I C A T I O N  TO N A T U R A L  FOLDS 

To illustrate the application of  the methods  outl ined 
above an a t tempt  has been made  to model  the folds 
observed  in the Morcles Nappe  of  the western Swiss 
Helvetic Nappes.  The  Morcles Nappe ,  shown in section 
with strain measurements  in Fig. 6, is geometr ical ly a 
large recumbent  fold with smaller scale folds. Later  
uplift of  the underlying Aiguilles Rouges  massif has 
bowed the nappe  upwards.  The  lower limb is very 
strongly de fo rmed  in what  appears  to be a shear zone.  
For the modell ing of  the folding in the nappe ,  the 
hypothesis  that  the structure developed by the imposi- 
t ion of  he te rogeneous  simple shear deformat ion  on an 
initial anticlinorium of low ampli tude folds was adopted ,  
(Fig. 7). It was assumed that  the axial planes of  the folds 
were initially perpendicular  to the enveloping surface. 
The  shear  zone boundary  is oblique to the enveloping 
surface except at the right hand  side of  the model ,  where 
the large-scale structure has its steepest  dip to the right. 
The amoun t  of  simple shear imposed is greatest  in the 
lower part  of  the nappe and falls off  upwards  except that 
towards  the top it increases in value once more.  

Simulations were carried out  to discover how the folds 
might have developed in various parts of  the nappe.  
Figure 8, taken f rom Badoux  (1971), shows a fold on the 
highly de fo rmed  lower limb of  the structure and a simu- 
lation is shown in Fig. 9. The over turned  limb of the 
model  fold is highly thinned relative to the normal  limb. 
This compares  well with the features seen in the natural 
folds. The vergencc of  the folds in nature and in the 
compute r  model  is opposi te  to that which would be 
expected from the shear sense of  the imposed deforma-  

tion. This is a consequence  of  the fact that  the shear zone 
is oblique to the enveloping surface o f  the initial folds. 
At  high strains the line joining the inflexion points in the 
same horizon may  be rota ted th rough  more  than 90 ° . 
W h e n  this line passes the 90 ° posit ion the relative lengths 
of  the normal  and over tu rned  limbs reverses,  so that  
below 90 ° the normal  limb is longer  and above 90 ° the 
over tu rned  limb is the longer. The reversal  takes place 

1 
for y > where ~ is the initial angle of  the shear  zone 

t a n a  

and the enveloping surface of  the folds. 
Figure 10 is a model  of  a fold f rom the upper  part  of  the 

normal  limb where  the shear is again high. The  initial 
angle of  the shear  zone and the enveloping surface was 5 ° 
which allows a large strain to be applied before the 
vergence changes.  The  fold form compares  well with the 
fold towards  the rear  of  the normal  limb in Fig. 6. 

A detai led study was made  of  folds f rom the frontal  
part  of  the nappe  si tuated to the east  of  Pont  de Nant  
(Swiss Car tographic  Commiss ion  map  coordinates  
577,125/122,600). The folds occur  in ~ mult i tayered 
sequence in the Argovian.  Their  wavelengths  are of  the 
order  of  5-20 m. They  are not  minor  folds of  the first 
o rder  in the nappe,  but the axial planes and enveloping 
surfaces of  the folds are parallel to those in the larger 
folds in the region. If it is assumed that the axial planes 
of  the initial per turbat ions  were originally at 90 ° to the 
enveloping surface, the amoun t  o f  simple shear  and the 
initial or ienta t ion of  the shear  zone can be est imated 
(see Fig. 11). The axial plane or ientat ion before  and 
after deformat ion  gives the following equat ion for y, 
(Ramsay  1967, equat ion ~-71) 

3/= co ta  -- co t (a  + /3) .  

~ ~ _ . ~  lOOm 

Fig. 8. A fold from the Maim limestones of the overturned limb of the 
Morcles nappe at La Tsantonnaire, looking eastwards. This fold is 
typical of the folds in the highly sheared region of the nappe, having a 

long inverted limb and a short normal limb. From Badoux (1971). 

Fig. 10. Simulation of a fold from the top of the normal limb of the 
Morcles Nappe. The broad arrows mark the inflexion points. The 
initial amplitude to wavelength ratio was 0.01, the shear zone was at 5 ° 
to the enveloping surface of the initial perturbation and the anisotropy 

index was 0.001. The imposed shear strain was 6.8. 



N u m e r i c a l  m o d e l l i n g  o f  s i m i l a r  fo lds  

Fig. 12, The fold studied which is situated at Erbeuets, West of Pont de Nant. Swiss topographic map coordinates: 
557,125/122,600. 

Fig. 14. Example of a pressure shadow from one of the limestone units. The section was taken in the X Z  section of the strain 
ellipsoid. The black horizontal lines in the photograph are the traces of pressure solution seams marking the cleavage. 
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axial plane 
before deformation 

[ ~ / _  enveloping surface orientation 
axial p lane ~ ~ .  after deformation 

~ ~ ~ ~  enveloping surface orientation 
~ - - - x  _ before/deformation 

shear zone 
orientation 

Fig. 11. Angular relationships of fold developing in simple shear. The 
assumptions of the theory allow the enveloping surface and axial plane 
to be treated as passive markers. It was assumed that the enveloping 

surface before deformation was horizontal. 

The reorientation of the enveloping surface gives 

3' = cot(t~ + 90 °) - cot(or + 8), 

where a is the initial orientation of the enveloping 
surface, /3 is the final orientation of the enveloping 
surface and 8 is the final orientation of the axial surface. 

The above equations were solved graphically to give 
= 12.5 and 3, = 3.2. 

Figure 12 is a photograph showing the fold studied. 
The more competent  units are limestones and the less 
competent  units are marls. The hinge of the fold is very 
sharp and the limbs are straight. The folds are of similar 
type if surfaces in the same mechanical situation, such as 
the outer  arcs of competent  units, are considered. Cleav- 
age is well developed in the less competent  units and on 
each limb is within 5 ° of being parallel to the axial plane. 
In the more competent  units the cleavage is less well 
developed and is refracted so as to form a convergent 
cleavage fan. The amount  of refraction is approximately 
the same on each limb so that the cleavage is symmetric 
to the axial plane. 

Both the competent  and incompetent  units have 
curved pressure shadows which allow deductions about 
the rotational components of the deformation to be 
made. 

The fold profile resulting from a simulation with a = 
12.5, m = 0.01, 3' = 3.2 and initial amplitude to 
wavelength ratio of 0.01 is shown in Fig. 13. Also shown 
in Fig. 13 are the orientations of the flattening plane of 
the finite strain ellipsoid calculated for the multilayers 

competent-~ 
incornpetent~ I 

X~-~.'~ ~"~°~'t'°t " '1 
competent I \ 

I 

Fig. 13. Simulation of the fold shown in Fig. 12. The broad arrows mark 
the inflexion points. 

Table 1. Bed thicknesses on each limb and their ratio. Mean value is 
1.52 and the standard deviation is 0.31 

Normal Overturned 
limb limb Ratio 

1.5 1.2 1.25 
2.1 1.7 1.24 
2.4 1.2 2 . ~  
0.75 0.5 1.50 
1.3 0.8 1.62 

on each fold limb. The multilayers had equal thickness 
components and the viscosity ratio was 0.4. The orienta- 
tion of the flattening plane in the less competent  unit in 
the model does not compare well with the orientation of 
the cleavage in the less competent  unit of the natural 
example. 

The values chosen for the parameters y and a ensure 
that the orientation of axial planes and the enveloping 
surface and ratio of limb lengths are the same in the 
natural example and the model. The interlimb angle of 
the model, 34 ° , compares very well with that of the field 
example, 30 ° . 

In Table 1 the bed thicknesses in each limb and their 
ratios are given. The mean ratio is 1.52 with a standard 
deviation of 0.32. The value given by the model is 1.55, 
which is within the standard deviation of the field 
measurements.  

Pressure shadows were studied to obtain an indication 
of the deformation history at various points in the fold 
using the methods of Durney & Ramsay (1973). The 
samples came mostly from the competent  limestone 
units, with only one from the incompetent  material. The 
curvature of the fibres in the pressure shadows was 
found to be very consistent and is the same for both 
limbs. An example is shown in Fig. 14. The fibre 
geometry is a good indication that these folds formed in 
a rotational deformation. The analysis above shows 
that, when volume change is not considered, the instan- 
taneous deformation at a point in the fold is a combina- 
tion of the imposed bulk deformation and a heterogene- 
ous simple shear. The latter component  gives rise to the 
fold profile shape and has opposite senses on opposite 
limbs. When the imposed bulk deformation is simple 
shear it overwhelms any aspect of the heterogeneity in 
the simple shear strain field and the same type of defor- 
mation history results at all points in the fold. This is 
shown in Fig. 15, which is a plot of the rotation rate of the 
deformation in the competent units on each limb. 

The following equation for anisotropy index m in 
terms of the thickness ratio F and viscosity ratio R was 
derived from equations for the shear and direct modulus 
given in Williams (1980, p.330) 

R 
m = 

3(F + ( 1 - F ) R ) ( F R  + 1 - F)" 

If Fis  set to 0.5 this equation can be rearranged to give a 
quadratic equation in R. 

3 m R  2 + (6m - 4)R + 3m = 0. 

This gives R ~ 1,331 for m = 0.001 and R --~ 131.3 for 
m = 0.01. 
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Fig. 15, Graph o! the rigid rotation rate, ~o, against y |or the more 
competent units of the simulation in Fig. 13. 

These values are admittedly very high but knowledge 
of the rheology of marls is insufficient to rule out such 
values .  

CONCLUSIONS 

U s i n g  the  s imi la r  fold  m o d e l  it is poss ib le  to  s i m u l a t e  

the f ini te  g e o m e t r y  o f  fo lds  in the  M o r c l e s  N a p p e .  

T h e  h y p o t h e s i s  tha t  the  M o r c l e s  N a p p e  f o r m e d  by the  

h e t e r o g e n e o u s  s i m p l e  s h e a r i n g  o f  a smal l  ini t ia l  p e r t u r -  

b a t i o n  is cons i s t en t  wi th  t he  o b s e r v a t i o n s .  

Fo r  s e l e c t e d  fo lds  it was poss ib le  to  v a r y  the  p a r a m e t -  

ers of  the  m o d e l  so tha t  a g o o d  a g r e e m e n t  was  o b t a i n e d  

for  all g e o m e t r i c  f e a t u r e s  o f  e a c h  fo ld ;  tha t  is, t he  axial  

p l ane  o r i e n t a t i o n ,  the  e n v e l o p i n g  su r f ace  o r i e n t a t i o n ,  

the  r e l a t i on  o f  c l e a v a g e  to  the  axial  p l a n e ,  the  i n t e r l i m b  

ang le  and  the  r e l a t i ve  t h i c k n e s s e s  o f  the  l imbs .  

T h e  p r e d i c t i o n s  of  t he  m o d e l  c o n c e r n i n g  d e f o r m a t i o n  

h i s to ry ,  as e x p r e s s e d  by the  c h a n g e s  in the  ve loc i ty  

g r a d i e n t  ma t r ix ,  a re  cons i s t en t  wi th  o b s e r v a t i o n s  of  

p r e s s u r e  shadows .  
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